BST 222
Basics of Statistical Inference
This course will provide a basic, yet thorough introduction to the probability theory and mathematical statistics that underlie many of the commonly used techniques in public health research. Topics to be covered include probability distributions (normal, binomial, Poisson), means, variances and expected values, finite sampling distributions, parameter estimation (method of moments, maximum likelihood), confidence intervals, hypothesis testing (likelihood ratio, Wald and score tests). All theoretical material will be motivated with problems from epidemiology, biostatistics, environmental health and other public health areas. This course is aimed towards second year doctoral students in fields other than Biostatistics. Background in algebra and calculus required.